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A B S T R A C T   

We develop a methodology to derive a global medium resolution (250 m) land mask from several existing data 
sources. In particular, a number of improved land mask data sets have been developed from satellite measure-
ments recently, though some artifacts and omissions still remain. We show how combining global land mask data 
from multiple independent data sources can decrease the frequency of artifacts, and improve the data consistency 
and quality. We use the ocean color product imagery derived from measurements of the Visible Infrared Imaging 
Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) to evaluate and validate 
the new global land mask implemented in the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data pro-
cessing system, and demonstrate the improvements in the derived global ocean color data coverage. Results show 
that when using the new proposed land mask the accuracy of global ocean color data coverage is significantly 
improved over coastal and inland waters. The new land mask more accurately represents the current global land 
coverage status, providing more complete and consistent global land/water coverage data set for ocean color 
remote sensing and for various other satellite Earth observing applications.   

1. Introduction 

Land mask (or water mask) is one of the most basic Earth observation 
data products, yet obtaining the accurate global data is surprisingly 
difficult. Part of the difficulty is due to an attempt to capture a changing 
environment in a static data set. Another difficulty is due to the fact that 
different applications require different water or land mask data. In the 
context of monitoring global waters from satellite Earth observations, 
the land mask data serve an important purpose to distinguish the areas 
where the different retrieval algorithms designed for land or water are 
applicable. In particular, for the satellite ocean color remote sensing, the 
land mask helps to screen out any invalid ocean color retrievals, which 
may be contaminated near coastal areas. The land mask also aids in 
visualization of satellite data sets such as those in the Ocean Color 
Viewer (OCView) (Mikelsons and Wang, 2018). 

The surface of the Earth is always changing, due to natural causes 
and human activities. New land is formed as sediment is deposited in 
river estuaries, and many areas in coastal waters are reclaimed from the 
sea by industrial development. Other low-lying lands are flooded by 
gradually rising sea levels, and new water reservoirs are artificially 

created to store water. Even within the diurnal time scale, many coastal 
areas are subject to high and low tides, which may also significantly 
impact water properties (Shi et al., 2011, 2013). Thus, it is not possible 
to account for all these changes with a single binary land-water data 
mask. Nevertheless, most of Earth’s surface waters have remarkably 
stable coastlines, especially compared with much faster changes in 
water properties. 

Most satellite ocean color (and other physical and optical environ-
mental quantities) retrieval algorithms rely on some prior knowledge of 
global land and water extents. The satellite sensors designed for moni-
toring Earth’s waters are typically medium spatial resolution 
(250–1000 m) spectrometers flying in a polar sun-synchronous orbit 
reaching global coverage in ~1–3 days, e.g., the Moderate Resolution 
Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites 
(Esaias et al., 1998; Salomonson et al., 1989), the Visible Infrared Im-
aging Radiometer Suite (VIIRS) onboard the Suomi National Polar- 
orbiting Partnership (SNPP) and NOAA-20 (Goldberg et al., 2013), the 
Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A and 
Sentinel-3B (Donlon et al., 2012), the Second-Generation Global Imager 
(SGLI) on the Global Change Observation Mission-Climate (GCOM-C) 
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(Tanaka et al., 2009), etc. The medium spatial resolution (250–1000 m) 
is adequate for studies of most of the global oceans. Retrieval of water 
properties from these observations requires a land or water mask of 
comparable resolution. Indeed, some of the land mask data sets have 
been derived from medium resolution Earth observing satellite data and 
thus have the same spatial resolution. 

Historically, data from MODIS and the Shuttle Radar Topography 
Mission (SRTM) have been used to derive land and water mask data sets 
(Carroll et al., 2017; Carroll et al., 2009; Li et al., 2013). In particular, 
MOD44Wv5 data (Carroll et al., 2009) have been used for many years by 
several ocean color retrieval algorithms including the Multi-Sensor 
Level-1 to Level-2 (MSL12) ocean color data processing system, which 
was originally developed for satellite ocean color data processing from 
multiple satellite sensors (Wang, 1999; Wang and Franz, 2000; Wang 
et al., 2002). MSL12 has been used for routinely producing VIIRS global 
ocean color products (Wang et al., 2013). However, MOD44Wv5 dataset 
was derived using MODIS measurements from 2003 to 2007 (Carroll 
et al., 2009) which was more than a decade ago, and thus does not 
capture recent changes to land and water surface. Furthermore, the land 
mask data for the Antarctic region in MOD44Wv5 are based on bedrock 
elevation data, thus this data set often misclassifies large areas peren-
nially covered by ice as water. 

A newer version, MOD44Wv6 (Carroll et al., 2017), was derived in 
2017 using MODIS and SRTM data from 2000 to 2015. However, this 
data set is somewhat heavily biased toward including more water pixels, 
even in areas with seasonal water presence. Furthermore, this land mask 
dataset does not contain any data for latitudes south of 60◦S. Due to 
these significant differences between MOD44Wv5 and MOD44Wv6, and 
due to historical use of MOD44Wv5 in the ocean color retrievals, we 
have opted to include both of these data sets in our analysis. 

In addition to the development of MOD44Wv6, machine learning 
techniques were used to derive several data sets characterizing the 
Global Surface Water (GSW) (Pekel et al., 2016), including seasonality, 
occurrence, recurrence, and change from the decades long record of 
Landsat data with higher spatial resolution (~30 m). In fact, Pekel et al. 
(2016) show detailed changes to the Earth surface environment in high 
spatial resolution. Thus, it is perhaps the most comprehensive study up 
to date. However, some artifacts are still present in this data set, espe-
cially in the Arctic polar region. Data for the Antarctic region are also 
missing from this data set. 

Another land mask data set was developed from the Landsat data 
from the studies of the global forest cover (GFC) (Hansen et al., 2013). 
This data set is designed to avoid water contamination in land forest 
studies, so it is somewhat biased toward including/masking more water 
pixels. It also has little to no data over both the Arctic and Antarctic 
polar areas where vegetation is scarce or non-existent (Hansen et al., 
2013). 

Finally, yet another approach is taken by OpenStreetMap (OSM) 
(www.openstreetmap.org), which is a community mapping project. 
Here, coastlines and contours of bodies of water are derived from mul-
tiple data sources, including high spatial resolution satellite imagery. 
This approach yields good quality land mask data for the coastlines, but 
coverage and data quality are somewhat inconsistent for inland bodies 
of water. For example, the level of detail and degree of spatial resolution 
for inland bodies of water may change from one region to another. For 
that reason, in this study we have chosen to use this data set only to 
improve the quality of the derived water mask in the polar regions. 

None of these existing land (or water) mask data sets are specifically 
designed for satellite-based global ocean color retrievals, and indeed, 
none of these data sets provide a consistent good quality water mask 
over the entire globe. The aim of this work is first to establish a meth-
odology to combine these data sets into a new derived land/water mask 
by improving the land mask coverage and eliminating the artifacts. 
While the aim of this work is to derive an improved land/water mask 
that is suitable for satellite ocean color studies, the same methodology 
can be used to derive land/water mask data for studies of other land or 

water based measurements. We note that while some of the land/water 
mask data sources used in this study may be derived from the same 
satellite measurements, the differences in methodologies ensure that the 
land mask data sets can be treated as independent sources for the pur-
poses of this study. We evaluate and validate the newly derived land 
mask using the satellite-measured clear sky true color and false color 
imageries (from VIIRS SNPP and NOAA-20, as well as OLCI-Sentinel- 
3A), which can be used as references to compare with the new land 
mask data visually and quantitatively. Finally, the improvements of the 
new land mask are demonstrated from the comparisons of global ocean 
color retrievals using the MSL12 ocean color data processing system 
among various land mask data over global oceans, and coastal and 
inland waters. 

2. Methodology 

2.1. Combining land mask data sets 

In this section, we show how to combine the land mask data sets from 
multiple data sources, including high spatial resolution data sources, to 
derive an improved medium spatial resolution global land (or water) 
mask. As noted above, in general, different data sources contain 
different quantities characterizing distribution of global surface water. 
While most data sources only distinguish between the two possibilities 
of land or water, the GSW data set includes a number of parameters 
characterizing the spatial and temporal distribution of global surface 
water (Pekel et al., 2016). For high spatial resolution data sources, 
multiple pixels correspond to a single medium resolution pixel, and thus 
provide information about the fraction of area covered by water. In 
addition, each data source has areas where no data are present. In order 
to capture all of this information in a single variable, we introduce a 
land-water indicator Λ, which can take values from − 1 to +1. Positive 
values indicate water, and negative vales indicate land. Zero value 
represents absence of data, and the absolute value of this indicator 
measures the degree of certainty that the particular pixel represents land 
or water. We derive this indicator for each of the data sources, and then 
combine these values to obtain the indicator for the combined land/ 
water mask. 

The MOD44Wv5 and MOD44Wv6 data represent the simplest 
connection with the indicator Λ. We choose the spatial resolution of the 
combined land mask to be the same as for these data sets. For each pixel, 
these data sets provide three possible values: land, water, or no data. 
Thus, we define the land-water indicator for MOD44Wv5 data as: 

ΛMv5 =

⎧
⎨

⎩

− 1 (land)
+1 (water)
0 (no data)

(1) 

We note that the MOD44Wv5 data set also includes flag data speci-
fying the data source used for each pixel, but we treat all data as equally 
valid, except for the case of no data. We use an identical expression to 
derive the land-water indicator for the MOD44Wv6 data. However, here 
we also take into account the values of data flags: for the flag values of 2 
and 8, which indicate that the data are inherited from MOD44Wv5 data, 
we interpret the data as missing so to avoid double counting the same 
data. 

The GFC data, derived from high spatial resolution Landsat data, 
have around 30 m spatial resolution (more precisely, 4000 pixels per 
degree of longitude or latitude). To derive the medium spatial resolution 
land-water indicator from GFC data, we first count the number of high- 
spatial resolution pixels that fall within the particular medium resolu-
tion pixel, and represent land, water, or no data. For the high-spatial 
resolution pixels that have only a partial overlap with the medium 
spatial resolution pixel, we count the fraction proportional to the area of 
overlap with the medium resolution pixel. We record the total number of 
high-spatial resolution land, water, and no data pixels as NL, NW, and NN, 
respectively, and calculate the normalized medium-spatial resolution 
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values of water and land pixel numbers as nW =NW/(NW +NL +NN), and 
nL = NL/(NW + NL + NN). In order to derive the medium spatial reso-
lution land-water indicator from the fractional land and water pixel 
values, we further introduce a water fraction threshold fGFC. This 
parameter determines the threshold value for the fraction of high-spatial 
resolution water pixels, above which the medium-spatial resolution 
pixel is interpreted as water. Thus, if nW is larger than fGFC(nW + nL), then 
the data indicate water, and if nW is less than fGFC(nW + nL), then the data 
indicate land. Thus, it is the difference nW − fGFC(nW + nL) that de-
termines if the pixel is to be interpreted as water or land. But it also 
indicates the degree of certainty of determination. As a result, instead of 
immediately assigning +1 (water) to pixels with nW larger than fGFC(nW 
+ nL), and − 1 (land) otherwise, we use a hyperbolic tangent function to 
map the values of this difference onto a continuous interval ranging 
from − 1 to +1 for the land-water indicator, which is then calculated as: 

ΛGFC = (nW + nL) tanh
[

nW − f GFC(nW + nL)

∆GFC

]

(2)  

here, ∆GFC is the smoothing parameter, which is used to smooth out the 
transition around the threshold value fGSW, so that for pixels where the 
data source has water to land pixel ratio close to the threshold value, the 
indicator would be close to zero. For example, if 50% threshold value is 
used (fGFC = 0.5), and the numbers of water and land pixels are equal, 
then this data source does not provide any information, and the 
weighted indicator will be zero. The smoothing parameter determines 
how the difference of the water fraction above (or below) the threshold 
value is related to the certainty of pixel being classified as water (or 
land), respectively. For example, using the same threshold value fGSW =

0.5 when the water fraction is nW = 0.6, and smoothing parameter ∆GFC 

= 0.05 will yield ΛGFC = tanh (2) ≈ 0.964, a fairly certain determination 
of a water pixel, whereas nW = 0.45 will yield ΛGFC = tanh (− 1) ≈ −

0.762, a somewhat less certain determination of land. We discuss 
choosing the adjustable parameters in the next section. Furthermore, 
ΛGFC is also proportional to the total number of known pixels, i.e., (nW +

nL), so that it will be zero in the areas where this data source has missing 
data. 

The GSW data set includes several quantities describing water 
presence and temporal change, such as occurrence, recurrence, sea-
sonality, and change. We choose to use the seasonality dataset, as it 
describes the state of global surface waters on a yearly basis, and pro-
vides data for the most recent time period—the year 2018 (latest as of 
now). Other data provided in this study quantify the evolution of the 
global surface waters over decades of Landsat observations and are very 
useful for historical analysis, but are not necessarily indicative of the 
most recent state of the surface waters. As in the case of GFC data, these 
data are derived from Landsat data series, although using a different, 

machine learning based approach. The spatial resolution is also 4000 
pixels per degree of longitude or latitude, same as for GFC data. How-
ever, instead of counting an entire high-spatial resolution pixel as either 
land or water (for valid data points), we count the fraction of the months 
per year that water was detected at the particular high-spatial resolution 
pixel. Thus, for high-spatial resolution pixels with valid data, we have 
NW

GFC = mW/12, NL
GFC = 1 − mW/12, and NN

GFC = 0. Here, mW is the 
number of months for which water was detected at the particular high- 
spatial resolution pixel (i.e., the seasonality). For high-spatial resolution 
pixels with no data, NN

GFC = 1, and NW
GFC = NL

GFC = 0. We then sum NW
GFC, 

NL
GFC, and NN

GFC over all high-spatial resolution pixels within each 
medium-spatial resolution pixel, and derive the normalized numbers of 
values for land and water pixel numbers in a similar manner as described 
for the GFC data (see Fig. 1 for graphical interpretation). We use the 
same formula as for the GFC data (Eq. (2)) to derive the medium spatial 
resolution land-water indicator for the GSW data, ΛGSW. However, in 
general, values of the water fraction threshold fGSW, and the smoothing 
parameter ∆GSW for the GSW data may differ from those used for the GFC 
data. 

We also use the OSM data to improve the quality of water mask in the 
polar areas. Since these data are available in vector format, we first 
transform these data into a raster format, sampling in the same (~30 m) 
spatial resolution as the GSW and GFC data derived from Landsat data. 
This yields high-spatial resolution raster data with only two possible 
values assigned to each pixel (land or water). We then use the same 
procedure as described for the GFC dataset to derive the corresponding 
medium-spatial resolution land-water indicator for the OSM data 
(ΛOSM). 

The combined water/land indicator is the weighted average over all 
the data sources: 

Λ =
ΛGSW wGSW + ΛGFCwGFC + ΛMv5wMv5 + ΛMv6wMv6 + ΛOSMwOSM

wGSW + wGFC + wMv5 + wMv6 + wOSM (3) 

The overall weights for each individual data source are chosen based 
on accuracy and age of each data source. Since OSM data are only used 
in polar areas, we set wOSM = 0 elsewhere. In particular, we only use the 
OSM data for the latitudes south of 56◦S, and north of 74◦N, as well as 
for Greenland and the waters surrounding it. As the last step, we inter-
pret all non-negative values of combined land-water indicator Λ as 
water, and the negative values as land. The entire algorithm is sum-
marized in a schematic diagram in Fig. 2. 

2.2. Parameter selection 

The values of the adjustable input parameters are selected based on 
visual evaluation of the combined land mask and comparison with each 

Fig. 1. Schematic illustration for deriving medium spatial resolution land-water fraction from the high-spatial resolution data: (a) GSW high-spatial resolution data 
of seasonality provide a fractional indicator (indicated by different shades of gray) of how many months per year water was detected in the area of each high-spatial 
resolution pixel and (b) GFC high-spatial resolution data only provide binary land–water value. Both GSW and GFC yield a fractional value at the medium-spatial 
resolution, based on the fraction of high-spatial resolution water pixels overlapping with the medium-spatial resolution pixel. The thick black line in both panels 
indicates the extent of a medium spatial resolution pixel. The two data sources do not necessarily have a perfect correlation. 
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data source. The high spatial resolution data sources require the water 
fraction threshold and smoothing factor. Since land has typically much 
higher reflectance in the visible spectrum than that of water, a relatively 
small fraction of land within the medium resolution pixel can contam-
inate the ocean color observations. Therefore, for the purposes of the 
satellite ocean color observations, the water fraction threshold should 
generally be above ½. For evaluation, we chose three values of the water 
fraction threshold, i.e., f = 0.7, 0.8, and 0.9, and observed relatively 
small differences in the resultant combined land mask, with higher value 
of 0.9 producing slightly more ocean color retrievals. We choose the 
smoothing parameter ∆ = 0.05 for all three high-spatial resolution data 
sources, and observed very minor impact on the results with variation of 
∆. The smoothing parameter ∆ should generally be smaller than the 
differences between the water fraction threshold values f used in com-
parison, otherwise it will greatly reduce sensitivity to f. We note that f 
and ∆ only have an effect on combined land mask for coastal areas, as 
well as for small and seasonal inland waters. 

The overall weights for each data source are determined based on 
accuracy and age of each data source. The values of these weights should 
not be too dissimilar: setting the overall weight too high for a single data 
source will cause the combined data set be entirely determined by this 
data source, including all of its artifacts. Setting the overall weight too 
low for any data source will essentially render it irrelevant to the com-
bined land mask data. With all of these considerations, the values of the 
adjustable parameters used in this work are summarized in Table 1. 

It should be noted that while we found these values of parameters a 
good choice to aid the satellite ocean color retrievals, different appli-
cation of land mask for other remote sensing products may require ad-
justments of these values. 

3. Results 

3.1. Comparison and evaluation using clear sky imagery 

We use the true color and false color clear sky imageries from the 
years 2018 and 2019 to validate the combined land (or water) mask. The 
true color imagery is derived using the spectral bands corresponding to 
the human perception of the red, green, and blue colors (Mikelsons and 
Wang, 2018). In the false color imagery, however, the green channel is 
replaced by the near-infrared (NIR) band, at which radiance is strongly 
absorbed by water (Hale and Querry, 1973), but is reflected by land and 
especially strongly reflected by vegetation (Qi et al., 2020). The clear 
sky imagery is derived using series of daily images over a certain time 
period and selecting the statistically robust estimate for the darkest pixel 
from these series, thus avoiding clouds and seasonal ice, and minimizing 
the impact of cloud shadows. Since water appears darker in both true 
color and false color images, the clear sky imagery is also somewhat 
biased toward water. Thus, detection of (darker) water in the false color 
clear sky imagery only implies presence of water at some point within 
the time period used to derive this imagery. However, detection of 
(brighter) land in clear sky imagery almost certainly implies absence of 
water at the given location during the entire time period used to derive 
this imagery. The false color imagery used in this study is derived from 
VIIRS-SNPP daily false color imagery (Qi et al., 2020), while the true 
color clear sky imagery includes the data from observations of VIIRS 
SNPP and NOAA-20, as well as OLCI on the Sentinel-3A/3B. 

We illustrate the comparison of the global combined land mask with 
the data sources in Fig. 3. The panels (a) and (b) in Fig. 3 show the 
MOD44Wv5 and MOD44Wv6 land masks, respectively. Land is dis-
played in gray and water is in white. While MOD44Wv5 land mask 
contains few inland water bodies in this area, MOD44Wv6 includes a 
large extent of inland water bodies, which are mostly seasonal (such as 
rice fields), and not necessarily relevant to ocean or water color studies. 
The panels (c) and (d) in Fig. 3 show the GSW seasonality and GFC data, 
respectively. These originally high-spatial resolution data sets have been 
resampled in the medium resolution with various degrees of water 
fraction shown in different shades of gray. In these data sets, the areas 
with no data are shown in pink. While the GSW seasonality data set 
(Fig. 3c) describes the spatial and temporal extent of inland waters in 
much greater detail than other data sources, it also shows some artifacts 

Fig. 2. Schematic diagram of the algorithm, showing the preprocessing of different data sources and combining into a single output land (or water) mask data set.  

Table 1 
The values of adjustable parameters for the five data sources.  

Land mask Threshold (f) Smoothing (∆) Weight (w) 

MOD44Wv5 – – 0.7 
MOD44Wv6 – – 0.8 
GSW 0.9 0.05 1.0 
GFC 0.9 0.05 0.9 
OSM 0.9 0.05 0.9  
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around the islands in the southeast part of the area. On the other hand, 
the GFC data (Fig. 3d) do not contain information on the seasonal 
variation, and thus show fewer inland waters, but also completely miss 
the islands in the southeast part of the area. Fig. 3e shows the combined 
land mask, which also excludes most seasonal inland water bodies, yet 
does not contain artifacts for the islands. The panel (f) in Fig. 3 shows the 
false color clear sky imagery of the same area from 2018. Here, the 
surface waters appear in purple, while land (mostly covered by vege-
tation) is bright green. As indicated above, the darker purple areas are 
only indicative of water presence during some time of 2018, while 
lighter green color indicates continuous land cover throughout this year. 

We have used the clear sky true color and false color imagery for a 
global evaluation and validation of the new combined land mask. In 
addition, we have also compared them to all the land mask data sources 
used in this study, as well as examined the differences between the new 
combined land mask and each data source. In some places, mostly in the 
coastal areas of China, we found that the most recent GSW data set 
matches better with the false color clear sky imagery used in validation, 
and in these areas we used the corresponding GSW land-water indicator 
ΛGSW directly to derive the land mask. 

Fig. 3. Area of the Mekong River delta in (a) 
MOD44Wv5 land mask, (b) MOD44Wv6 land 
mask includes many seasonal bodies of water, 
such as rice fields, (c) GSW seasonality data 
indicate the number of months per year water 
was detected in the particular area (indicated 
by varied shades of gray), yet showing arti-
facts around the island in the lower right 
corner of the sample area, (d) GFC high-spatial 
resolution data also provide a water fraction in 
the medium-spatial resolution data, yet are 
also biased toward water, and completely miss 
the island in the lower right corner, (e) the 
combined water mask, and (f) false color clear 
sky imagery. Pink shades in panels (c and d) 
indicate gaps in the corresponding data sour-
ces. (For interpretation of the references to 
color in this figure legend, the reader is 
referred to the web version of this article.)   
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3.1.1. Global overall evaluation 
We show the new combined land mask at a global scale in Fig. 4a, 

and highlight the differences from the MOD44Wv5 land mask. Here, the 
areas interpreted as land (or ice) in both data sets are displayed in dark 
gray. The areas where the MOD44Wv5 data set indicates water, but the 
combined land mask indicates land (or ice) are shown in yellow. There 
are some areas where MOD44Wv5 indicates land, but the combined land 
mask indicates water, and those are shown in magenta color. Most of the 
differences come from the polar regions and arid inland areas with 
seasonal waters. It is clear that the MOD44Wv5 land mask has fewer 
land pixels, especially around Antarctica (Fig. 4c). Here, the extent of 
land in the MOD44Wv5 data set is based on the bedrock elevation data, 
and thus does not include large areas permanently covered by ice. 
However, this difference does not reflect a deficiency, but rather a 
different purpose for the MOD44Wv5 data set. 

3.1.2. Evaluation over global coastal regions 
In order to evaluate the performance of the updated land mask in 

coastal regions, we show some regional examples comparing the com-
bined global land mask with the MOD44Wv5 land mask, and the clear 
sky false color imagery from 2019 in Fig. 5. The first example (Fig. 5a) 
shows the MOD44Wv5 land mask for the Atlantic coast of Georgia and 
South Carolina, with coastal wetlands clearly identified as water. The 
updated land mask (Fig. 5b) treats most of the coastal wetlands as land, 
and that is confirmed by the corresponding false color imagery in Fig. 5c. 
Although parts of these wetlands are indeed covered by water, signifi-
cant presence of vegetation means that ocean color retrievals are nearly 
always contaminated by the high reflectance signal from the vegetation. 

The coastline of the Bohai Sea has undergone many recent changes, 
most of which are not reflected in the MOD44Wv5 data (Fig. 5d). The 
new combined land mask (Fig. 5e) captures recent changes to the 
coastline and the reclaimed lands, as confirmed by the corresponding 
clear sky false color imagery in Fig. 5f. 

Fig. 5g–i shows the southeastern part of Greenland. The updated land 
mask (Fig. 5h) shows longer fjords due to receding glaciers (as compared 
to the MOD44Wv5 land mask in Fig. 5g), again confirmed by the false 
color imagery (Fig. 5i). 

In the example showing the Ganges River Delta region (Fig. 5j–l), the 
MOD44Wv5 land mask (Fig. 5j) overestimates the extent of the river as 
well as the many channels. The updated land mask (Fig. 5k) is more 
consistent with the false color imagery (Fig. 5l). This area too is subject 
to rapid changes of the coastline due to a large amount of sediment 
carried by the river and deposited in the delta region. 

A more complete comparison of all the land mask data sources and 
the derived land mask for these regional examples is provided in the 
Supplementary Material (Figs. S1–S4). In addition to the cases shown in 
Fig. 5, we also note that MOD44Wv5 land mask tends to miss several 
islands in the Pacific (e.g., the Fatu Hiva Island in Marquesas), Arctic (e. 
g., the Henrietta Island), and Antarctic (the entire chain of the South 
Sandwich Islands). 

3.1.3. Evaluation over global inland waters 
We also perform a similar evaluation of the updated land mask for 

the inland waters, and show some examples in Fig. 6. In the first example 
(Fig. 6a), the MOD44Wv5 land mask data show a much larger extent for 
the Aral Sea that could have been accurate decades ago before the 

Fig. 4. (a) The global image of the com-
bined land mask including differences from 
the MOD44Wv5 land mask. Dark gray areas 
denote land (or ice) in both data sets; yellow 
color denotes areas identified as water in 
MOD44Wv5, but land (or ice) in the com-
bined land mask, and magenta color denotes 
land in MOD44Wv5, but water in the com-
bined land mask. While both land masks are 
mostly in agreement, the combined land 
mask identifies more land (or ice) in the 
polar regions. Panels (b) and (c) show the 
Arctic and Antarctic regions, respectively, 
including the differences from MOD44Wv5 
data set with the same color coding. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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dramatic shrinkage. The new combined land mask (Fig. 6b) is more 
accurate, and also matches quite well with the clear sky false color 
imagery from 2019 (Fig. 6c). It should be noted that the Aral Sea is still 
subject to frequent changes of water surface area, and cannot be accu-
rately described by a single static data set. 

Fig. 6d shows the MOD44Wv5 land mask for the floodplains of the 
Ob River in Russia, which appears to exaggerate the extent of the river 
water surface. In contrast, the new combined land mask (Fig. 6e) is more 
consistent with the recent clear sky false color imagery (Fig. 6f). 

The surface area of many lakes on the Tibetan Plateau has increased 

over the last few decades (Song et al., 2014), and that is reflected in the 
updated land mask (Fig. 6h), and the false color imagery (Fig. 6i) for this 
region, as compared to the older MOD44Wv5 land mask (Fig. 6g). 

In the last example, the MOD44Wv5 land mask appears to exaggerate 
the extent of the inland waters in the western United States (Fig. 6j), 
while the new combined land mask (Fig. 6k) is more consistent with a 
recent clear sky false color imagery (Fig. 6l). The MOD44Wv5 land mask 
also misclassifies the ice and fields of solidified lava over the North and 
South Sister volcanoes as water (Fig. 6j, upper left). Similar misclassi-
fication happens for other volcanoes in Kamchatka, Alaska, New 

Fig. 5. Comparison of MOD44Wv5 land mask (left column), the new combined land mask (center column), and the clear sky false color imagery (right column) 
derived from 2019 data for (a)–(c) Atlantic coast of the southeast US (Georgia, South Carolina), (d)–(f) changes to the coastline of the Bohai Sea due to human 
development, (g)–(i) receding glaciers on the southeast coast of Greenland, and (j)–(l) changes to the coastline in Ganges Delta area. 
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Zealand, and other places. 
A more complete comparison of all the land mask data sources and 

the derived land mask for these regional examples is provided in the 
Supplementary Material (Figs. S5–S8). In addition to the types of 
changes shown in Fig. 6, older MOD44Wv5 land mask also does not 
include many recently created water reservoirs, such as the Indira Sagar 
Reservoir (India), the Alqueva Lake (Portugal), the Murum Dam 
Reservior (Malaysia), and others. 

To provide quantitative comparison of all the input data sources, and 

the derived land masks, we show the statistics of the percentage of land 
pixels for all of the regional examples shown in Figs. 3, 5, and 6 in 
Table 2. As mentioned above, the OSM land mask is only used for the 
polar areas, thus only OSM data for southeast Greenland are shown. The 
GFC land mask does not include the polar areas, thus no data for this 
area are available. As seen from Table 2, the MOD44Wv5 and 
MOD44Wv6 land masks underestimate the extent of land. Unsurpris-
ingly, the percentage of land pixels in the new derived land mask 
matches the closest to the GSW data, which has the highest weight in 

Fig. 6. Comparison of MOD44Wv5 land mask (left column), the new combined land mask (center column), and the clear sky false color imagery (right column) 
derived from 2019 data for (a)–(c) the Aral Sea which has shrunk considerably from the area shown in MOD44Wv5 data, (d)–(f) overestimation of the surface area in 
Ob River branching with MOD44Wv5 land mask, (g)–(i) increased surface area in the lakes on the Tibetan Plateau, and (j)–(l) decreased extent of lakes in the 
western US. 
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Table 1. 

3.2. Evaluation of effect on the ocean color retrievals 

3.2.1. Global and regional VIIRS-derived Chl-a data 
For the evaluation of the effects of various land mask data sets on 

VIIRS-derived ocean color products, we use the MSL12 ocean color data 
processing system with the NIR and shortwave infrared (NIR-SWIR) 
combined atmospheric correction algorithm (Gordon and Wang, 1994; 
Jiang and Wang, 2014; Wang, 2007; Wang and Shi, 2007). Specifically, 
we compare VIIRS-SNPP-derived global and regional Chl-a data (Wang 
and Son, 2016) using various land mask inputs in MSL12, and evaluate 
Chl-a data coverage and corresponding data quality. It is particularly 
noted that in the VIIRS ocean color data processing all are the same 
except for the inputs of land mask data sets. Therefore, differences in 
VIIRS-SNPP-derived Chl-a data are all due to the use of different land 
mask data in the MSL12 ocean color data processing. It should also be 
noted that, through all these years, VIIRS-SNPP ocean color products 
have been well evaluated and validated, showing high quality data over 
global open oceans and reasonable retrievals over coastal and inland 
waters (Barnes et al., 2019; Hlaing et al., 2013; Mikelsons et al., 2020; 
Wang et al., 2020). 

3.2.2. Evaluation of global ocean color data 
In order to evaluate the effect of using various land mask choices on 

the ocean color retrievals, we have processed VIIRS-SNPP data using the 
MSL12 ocean color data processing system (Wang et al., 2013) and 
derived the Level-2 Chl-a concentration data (Hu et al., 2012; O’Reilly 
et al., 1998; O’Reilly and Werdell, 2019; Wang and Son, 2016) with 
three choices of land mask: (1) MOD44Wv5 land mask used up till 
present in MSL12 operational ocean color retrievals, (2) MOD44Wv6 
land mask, and (3) the new combined land mask developed in this study. 
We have processed data for the 24 days evenly scattered throughout 
2019 for a better representative sample. The quantitative comparison of 
number of valid global ocean color retrievals is shown in Table 3. Since 
the changes of the land mask mostly affect only the coastal and inland 
waters, we also show the results for retrievals with water depth less than 
1 km and 250 m. 

We note that MOD44Wv6 produces more retrievals due to added 
water pixels in land mask (positive values in “Change of water pix.” 
column), however, it loses an even larger number due to attempted re-
trievals over land pixels misclassified as water by this land mask (indi-
cated by negative values in “Change of masked pix.” column). The new 

combined land mask yields more ocean color retrievals, both due to 
more water pixels and fewer misclassified land pixels. While the 
improvement seems relatively small relative to the total number of 
global retrievals, it becomes more significant for shallower coastal and 
inland waters. In fact, for regions with water depth < 250 m, the total 
number of pixels changed with the new land mask is about 3.0 × 105, 
which may be quite significant for water property data over regional 
coastal and inland waters. 

3.2.3. Ocean color products from global coastal regions 
A visual comparison of ocean color retrievals for four selected scenes 

is shown in Fig. 7: the left column corresponds to the MOD44Wv5 land 
mask, the center corresponds to the MOD44Wv6 land mask, and imag-
ery in the right column is obtained with the new combined land mask. 

Fig. 7a shows VIIRS-SNPP Chl-a retrievals obtained with the 
MOD44Wv5 land mask from the Georgia and the South Carolina (US) 
Atlantic coast recorded acquired on April 15, 2019, at 18:42 UTC. 
Despite large areas of wetland classified as water, few ocean color re-
trievals are recorded for those areas. In addition, some of the retrievals 
near shore are also masked out by the cloud shadow and stray light flag 
(Jiang and Wang, 2013). Both of these artifacts are due to misclassifi-
cation of land or vegetation rich wetland areas as water by the 
MOD44Wv5 land mask. As a result, the high reflectances at the mis-
classified pixels are interpreted by MSL12 as due to clouds, and masked 
out. In addition, much larger surrounding areas are also masked out due 
to assumed likely contamination by straylight and cloud shadows (Hu 
et al., 2020; Jiang and Wang, 2013), thus reducing the number of valid 
ocean color retrievals. The same effect is also evident in Fig. 7b, showing 
VIIRS-derived Chl-a using the MOD44Wv6 land mask, which interprets 
even larger wetland areas as water pixels. However, Chl-a retrievals 
obtained with the new combined land mask (Fig. 7c) are more consis-
tent, providing more retrievals over the wetlands and fewer data gaps 
overall. 

Fig. 7d–f shows the VIIRS-SNPP-derived Chl-a data from February 
15, 2019, at 12:09 UTC, obtained with the three land masks for the 
North Sea. Again, while using either the MOD44Wv5 (Fig. 7d) or 
MOD44Wv6 (Fig. 7e) land mask results in several areas of valid re-
trievals masked out due to perceived cloud contamination, fewer such 
cases are visible in retrievals with the updated land mask in Fig. 7f. 

Fig. 7g shows VIIRS-SNPP Chl-a retrievals from the Bohai Sea on 
September 1, 2019, obtained with the MOD44Wv5 land mask. Since the 
MOD44Wv5 land mask is somewhat outdated, it does not capture the 
coastal land reclamation developments in the area over the last two 

Table 2 
Land pixel percentages for the regional examples corresponding to Figs. 3, 5, and 6.  

Region MOD44Wv5 MOD44Wv6 GSW GFC OSM New 

Mekong Delta 34.931 33.733 35.467 35.359 – 35.299 
Southeast US 69.592 69.578 70.956 71.179 – 70.920 
Bohai Sea 60.035 59.924 61.070 61.183 – 60.814 
Southeast Greenland 45.628 44.620 44.689 – 44.266 44.662 
Ganges Delta 51.100 51.096 52.864 52.565 – 52.370 
Aral Sea 92.679 95.830 97.633 96.604 – 96.916 
River Ob 92.006 92.319 96.471 97.080 – 96.410 
Tibetan Plateau 96.586 95.960 95.535 97.065 – 96.131 
Western US 98.304 98.888 99.366 99.477 – 99.354  

Table 3 
Comparison of number of retrievals with MOD44Wv5, MOD44Wv6, and the new combined land masks for different maximum water depths in global ocean and inland 
waters.  

Water depth MOD44Wv5 MOD44Wv6 Combined 

Total retrievals Relative change Change of water pix. Change of masked pix. Relative change Change of water pix. Change of masked pix. 

All 1.59 ⋅109 − 0.118% +0.013% − 0.131% +0.021% +0.005% +0.016% 
< 1000 m 2.14 ⋅108 − 0.825% +0.099% − 0.924% +0.169% +0.039% +0.130% 
< 250 m 1.53 ⋅108 − 1.032% +0.138% − 1.170% +0.194% +0.055% +0.139%  
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decades, and thus misclassifies many land pixels as water. This produces 
many failed retrievals with the MOD44Wv5 land mask, resulting in even 
larger areas masked out due to perceived cloud contamination (Wang 
and Shi, 2006) (Fig. 7g). Although newer, the MOD44Wv6 land mask is 
actually even more biased toward water, and thus produces even more 
misclassified pixels (Fig. 7h), resulting in even larger masked out areas. 
In contrast, Chl-a retrievals obtained with the more up-to-date combined 
land mask (Fig. 7i) show fewer data gaps in coastal areas. 

The last scene, Fig. 7j–l shows Chl-a retrievals from May 15, 2019, in 
the Mississippi Delta, a complex coastal region with highly turbid, but 

also shallow waters. Here, the loss of ocean color retrievals due to pixel 
misclassification by the MOD44Wv6 land mask is especially evident and 
very significant in the area east from the delta (Fig. 7k). Comparing the 
retrievals with the MOD44Wv5 and the new combined land masks in 
Fig. 7j and l, respectively, we see both of these land masks result in some, 
though much smaller, loss of retrievals in different areas. This illustrates 
the overall difficulty of deriving a single land mask data set in such 
complex coastal areas. A more complete comparison with the corre-
sponding true and false color imagery for the examples in Fig. 7 is 
provided in the Supplementary Material (Fig. S9). 

Fig. 7. Comparison of Chl-a re-
trievals in coastal areas from VIIRS- 
SNPP measurements using different 
land mask data sets. Land is displayed 
in dark gray, missed retrievals due to 
cloud shadow/straylight flag in 
magenta, and no retrievals over water 
due to other conditions (clouds, sun 
glint, etc.) in white. Some of the dif-
ferences in retrievals are emphasized 
by the black circles. Left column: 
using the MOD44Wv5 land mask; 
center column: using the MOD44Wv6 
land mask, and right column: using 
the new combined land mask data set. 
Scene identification: (a)–(c) Georgia 
and South Carolina coast, April 15, 
2019, 18:42 UTC; (d)–(f) the North 
Sea, February 15, 2019, 12:09 UTC; 
(g)–(i) the Bohai Sea, September 1, 
2019, 05:06 UTC; and (j)–(l) the 
Mississippi delta, May 15, 2019, 
19:20 UTC. (For interpretation of the 
references to color in this figure 
legend, the reader is referred to the 
web version of this article.)   
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3.2.4. Ocean color products from global inland waters 
In addition to coastal waters, we also perform a similar comparison 

and evaluation of ocean color retrievals obtained with the three land 
mask choices for various inland bodies of water. 

Fig. 8a–c shows the differences in the land masks and the ocean color 
retrievals for the Aral Sea observed by VIIRS-SNPP on May 1, 2019. The 
MOD44Wv5 land mask shows the extent of the Aral Sea before the large 
scale depletion due to human activities. On the other hand, the 
MOD44Wv6 land mask (Fig. 8b) shows a much smaller and partitioned 
Aral Sea, yet still overestimates its present extent. Both of these land 

masks result in failed and masked out Chl-a retrievals due to land/water 
misclassifications. In comparison, the new updated land mask (Fig. 8c) 
shows a more realistic picture of the present state of the Aral Sea and 
fewer failed or masked out Chl-a retrievals. We note again that the exact 
extent of the Aral Sea changes seasonally and interannually, and thus 
may not be exactly described by a static land mask. 

A similar effect is seen in Fig. 8d–f, showing Chl-a retrievals derived 
with the three land masks from VIIRS-SNPP data over the northeast 
Caspian Sea recorded on September 15, 2019. Again, the MOD44Wv5 
and MOD44Wv6 land masks significantly overestimate the extent of the 

Fig. 8. Chl-a retrievals from VIIRS- 
SNPP measurements using the 
MOD44Wv5 land mask (left column) 
and the MOD44Wv6 land mask (cen-
ter column), compared with the new 
combined land mask (right column). 
The land is displayed in dark gray, 
missed Chl-a retrievals due to cloud 
shadow and straylight flag in 
magenta, and no retrievals over water 
due to other conditions (clouds, sun 
glint, etc.) in white. Scene identifica-
tion: (a)–(c) Aral Sea, May 1, 2019, 
08:38 UTC; (d)–(f) northeast Caspian 
Sea, September 15, 2019, 09:10 UTC; 
(g)–(i) the Great Salt Lake, September 
1, 2019, 20:21 UTC; and (j)–(l) Lake 
Okeechobee, April 15, 2019, 18:41 
UTC. (For interpretation of the refer-
ences to color in this figure legend, 
the reader is referred to the web 
version of this article.)   
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water surface and result in many failed or masked out Chl-a retrievals 
(Fig. 8d and e). The updated land mask (Fig. 8f) is more reflective of the 
present extent of the water surface and produces more consistent Chl-a 
retrievals with fewer data gaps. 

Fig. 8g–i shows a similar comparison of Chl-a retrievals for the Great 
Salt Lake in the US, produced from VIIRS-SNPP observations recorded 
on September 1, 2019. The MOD44Wv5 land mask again overestimates 
the extent of the lake (Fig. 8g), and results in failed and masked out Chl-a 
retrievals. The MOD44v6 land mask actually represents the present 
extent of the Great Salt Lake quite well (Fig. 8h), but it also includes 
several seasonal bodies of water around it, which in recent years are 
rarely covered by water. The new combined land mask (Fig. 8i) likewise 
produces consistent retrievals over the Great Salt Lake, and does not 
include areas that are rarely covered by water. 

In the last example, we show the comparison of Chl-a retrievals for 
Lake Okeechobee in Florida acquired on April 15, 2019. We note that 
slight changes in the land mask from MOD44Wv5 (Fig. 8j) to 
MOD44Wv6 (Fig. 8k) may result in a noticeable change in Chl-a re-
trievals in the north part of the lake. In this case, both MOD44Wv6 and 
the new updated land mask (Fig. 8l) produce the most consistent Chl-a 
retrievals. A more complete comparison with the corresponding true 
and false color imagery for the examples in Fig. 8 is provided in the 
Supplementary Material (Fig. S10). 

In addition to the multiple scenes of imagery, we also show a 
quantitative comparison of the number of Chl-a retrievals derived using 
the MOD44Wv5 land mask and the new combined land mask for a few 
selected coastal and inland water regions in Table 4: 

The data in Table 4 are based on the same 24 evenly distributed days 
in the year 2019. The geographical extent is defined by the northwest 
and southeast corners for a rectangular area in geographical projection. 
We see that the new combined land mask yields significantly more Chl-a 
retrievals in the coastal of the East China Sea, as well as for the area 
around the Aral Sea, and the lakes on the Tibetan Plateau. However, it 
provides slightly fewer Chl-a retrievals in the Mississippi Delta and the 
Amazon River basin. Both land masks are very close for the US East 
Coast region and the Great Lakes, and there is little change in the 
number of Chl-a retrievals for these areas. 

4. Discussion 

The method proposed and employed in this work relies on using 
multiple independent land mask data sources to eliminate the artifacts 
in the new combined land mask data set. The assumption is that in the 
independent land mask datasets, any artifacts are not correlated and 
likely to occur in different areas, and thus can be eliminated in the 
combined land mask data by combining the data sources according to 
some weighted majority rule. This assumption is mostly valid in all areas 
except for the polar regions where additional (OSM) dataset is required 
due to the lack of the data in most other data sources. Overall, the GSW 
data set is the most recent and most comprehensive. However, it too has 
some artifacts and areas of missing data. In general, combining a recent 
and high-quality land mask data set with older and outdated data sets 
may degrade the quality of the combined data set, as compared to the 
high quality one, especially in the areas where the latter is free from 

artifacts. We have attempted to mitigate this by assigning higher weight 
to the GSW data, as compared to the other data sources. 

Since some of the data sources have been derived from the same 
satellite observations, there may be a concern as to what extent are the 
data sources truly independent. As we have noted, and shown in many 
examples, the land/water masks derived from the same satellite data 
tend to differ significantly due to differences in the methodology used to 
derive them. However, using data derived from the same satellite 
measurements may still include some sampling bias, due to particular 
spatial-temporal coverage of satellite observations. Including additional 
data sources derived from other satellite measurements would allow to 
mitigate this concern. 

Combining or assimilating multiple land mask data sources requires 
some adjustable parameters. We note again that the choice of such pa-
rameters depends on the application, and no single land mask dataset 
can completely describe the dynamics of the global surface waters. The 
new combined land mask data set in this work was derived mostly for 
the use with medium spatial resolution satellite ocean color measure-
ments, though it is expected to be an improvement for other types of 
satellite-based measurements of ocean properties. We find that for the 
ocean color measurements, false (mis)identification of land as water is 
rather costly as it results in masking out larger areas by the ocean color 
retrieval algorithm due to perceived cloud contamination (Hu et al., 
2020; Jiang and Wang, 2013). Similar considerations may be valid for 
other types of water properties measurements. On the other hand, the 
measurements of various land properties would likely require avoiding 
the contamination due to water surfaces. 

We note that for ocean color remote sensing, most of the changes to 
the number of satellite retrievals arise due to excessive cloud shadow 
and stray light masking when a land pixel is misidentified as water (Hu 
et al., 2020; Jiang and Wang, 2013). Thus, the optimal land mask for 
maximal number of retrievals indirectly depends on the details of the 
cloud shadow and straylight masking algorithms used. 

It should be mentioned that the design of a land mask (or water 
mask) data set involves a compromise between the need to maximize the 
water surface subject to ocean color measurements, and the requirement 
to avoid land contamination. Due to seasonal changes of the water 
surface area, it is not possible to completely satisfy both of these re-
quirements in a single static data set. Thus, some seasonal inland waters 
may be lost in a static land mask, including the new land mask. 

Overall, we find that the new combined land mask data set derived in 
this study is a significant improvement over the aging MOD44Wv5 land 
mask, especially in the areas with recent changes, such as coastal areas 
altered by development and land reclamation, and artificially created 
new inland water reservoirs. The new combined land mask data set 
scores even better compared to the comparatively recent MOD44Wv6 
data, mostly due to overrepresentation of the seasonal inland waters in 
the latter. 

Naturally, this work can be further extended by incorporating the 
seasonal variation into a consistent global land mask data set. However, 
at present, the GSW is the only data set known to us to include the water 
surface seasonality. Additionally, the present version is not truly global 
(as it excludes the Antarctic region), and also it is not free from artifacts. 
Thus, other data sources (such as false color imagery) are likely needed 

Table 4 
Comparison of number of retrievals with MOD44Wv5 and the combined land masks for selected coastal and inland regions.  

Region Geographical extent MOD44Wv5 retrievals Combined land mask retrievals Change (%) 

Amazon River (1◦N, 73◦W) – (7◦S, 49◦W) 99,846 99,190 − 0.65% 
Aral Sea (47◦N, 56◦E) – (41◦N, 63◦E) 130,727 154,002 +17.8% 
East China Sea (41◦N, 117◦E) – (31◦N, 127◦E) 3,489,260 3,542,822 +1.5% 
Great Lakes (49◦N, 92.2◦W) – (41.3◦N, 76◦W) 1,536,649 1,536,960 − 0% 
Mississippi Delta (31◦N, 95◦W) – (28◦N, 85◦W) 912,297 908,186 − 0.5% 
Tibetan Plateau (36.5◦N, 79◦E) – (29◦N, 93◦E) 137,602 154,430 +12.2% 
US East Coast (40◦N, 77.5◦W) – (34◦N, 75◦W) 592,640 592,561 − 0.01%  
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for such a task. An updated version of the GSW data set with complete 
global coverage and minimized artifacts would be a great resource for 
ocean color remote sensing. 

Likewise, it is straightforward to extend the methodology in this 
work to produce an updated higher spatial resolution global land mask 
using the existing data sources. However, with fewer high spatial reso-
lution data sources and more spatial detail, it may be more difficult to 
ensure the consistency and quality of such results. 

5. Conclusions 

We have introduced a method to assimilate multiple independent 
land- or water-mask data sets into a combined land mask, whereby 
minimizing the artifacts in each data set, incorporating changes from 
more recent data sets, and increasing the global coverage. We have used 
this method to derive an updated, more complete, and more consistent 
land mask data set for the satellite ocean color remote sensing. The 
quality of the new combined land mask is evaluated and validated using 
the comparison with global clear sky true color and false color imag-
eries, and by evaluating the effect of the updated land mask data set on 
the global ocean color retrievals. Though this work is focused on 
improving the global land mask data specifically for the satellite ocean 
color retrievals, the methodology can be applied to derive land- or 
water-mask data for different areas of study. 
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